Worksheet for 2021-08-27

Conceptual questions
Question 1. Draw the parametric curve $x=e^{t}, y=e^{2 t}$. (When not stated, you should assume that the t interval is the largest possible, in this case from $-\infty$ to ∞.)
Question 2. If $x=f(t), y=g(t)$ is some parametric curve, how does $x=f(3 t), y=g(3 t)$ compare?
Question 3. Let C be the shape described by the equation $x^{2}+y^{2}=5$. (What is this shape?) If we take C and
(1) shift it by 2 units in the positive y direction (ie. upwards),
(2) and then stretch it by a factor of 3 in the x direction Question 4. Come up with a parametrization $x=f(t), y=$ $g(t)$ for the starting shape C in the preceding problem, and then a parametrization for the shape obtained after applying the transformations.

Question 5. Suppose a parametrization $x=f(t), y=$ $g(t), a \leq t \leq b$ traces out a circle exactly once counterclockwise, ending where it started. One of the expressions $\int_{a}^{b} f(t) g^{\prime}(t) \mathrm{d} t$ and $\int_{a}^{b} g(t) f^{\prime}(t) \mathrm{d} t$ computes the area enclosed by the circle, and the other is its negative. Figure out which is which. (ie. horizontally),
what Cartesian equation describes the resulting shape?
(1) Right half of parabola $y=x^{2}$, excluding origin

(2) Graphically it is the same curve, just traced 3 times as fast.
(3) C is 2 circle of radius $\sqrt{5}$ centered (2) $(0,0)$. move up:

$$
\begin{aligned}
& x^{2}+(y-2)^{2}=5 \\
& \left(\frac{x}{3}\right)^{2}+(y-2)^{2}=5
\end{aligned}
$$

then stretch.
(4) $x=\cos t, y=\sin t \quad 0 \leq t<2 \pi$ parametrizes unit circle. So

$$
\begin{aligned}
& \frac{x}{\sqrt{5}}=\cos t \quad \frac{y}{\sqrt{5}}=\sin t \\
& \text { ie. } \\
& x=\sqrt{5} \cos t \quad y=\sqrt{5} \sin t
\end{aligned}
$$

parametrizes C. Then do same
transformations:

$$
\frac{x}{3}=\sqrt{5} \cos t \quad y-2=\sqrt{5} \sin t
$$

is.

$$
x=3 \sqrt{5} \cos t \quad y=\sqrt{5} \sin t+2
$$

parumetious the final ellipse.
(5)

$$
\text { For A: } \quad y>0 \quad d x<0
$$

Think about the sign of $y d x$.
for $B: \quad y>0 \quad d x>0 \quad+$ For C. $\quad y<0 \quad d x<0 \quad-$

If

(the integral $\int_{a}^{b} f(t) g^{\prime}(t) d t$ gives the arrear, with comet sign.)

